COBYQA

A DERIVATIVE-FREE TRUST-REGION SQP METHOD FOR NONLINEARLY CONSTRAINED OPTIMIZATION

Tom M. Ragonneau Zaikun Zhang
CSE23 (March 2, 2023)

Department of Applied Mathematics
The Hong Kong Polytechnic University

General context

We design a method named COBYQA for solving¹

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & c(x) \leq 0 \\
& l \leq x \leq u
\end{array}
$$

where derivatives of f and c are unavailable.

Notes on the method

- COBYQA aims at being a successor to COBYLA (Powell 1994).
- We implement COBYQA into a Python solver.
- The bound constraints are handled separately.

[^0]
INVIOLABLE BOUND CONSTRAINTS

The bound constraints $l \leq x \leq u$ are assumed inviolable

- They often represent inalienable restrictions.
- f or c may not be defined otherwise.

Therefore, COBYQA always respects the bound constraints.
A few examples from academia and industry

- Optimization method tuning (Audet and Orban 2006).
- Hyperparameter tuning (Ghanbari and Scheinberg 2017).
- Aircraft engineering (Gazaix et al. 2019).

TAbLE OF CONTENTS

1. The general framework
2. Interpolation-based models
3. Many difficulties arise
4. Implementation and experiments
5. Conclusion

The general framework

The derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

$$
\begin{aligned}
\min _{d \in \mathbb{R}^{n}} & \nabla f\left(x^{k}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla_{x, x}^{2} \mathcal{L}\left(x^{k}, \lambda^{k}\right) d \\
\text { s.t. } & c\left(x^{k}\right)+\nabla c\left(x^{k}\right) d \leq 0, \\
& l \leq x^{k}+d \leq u, \\
& \|d\| \leq \Delta^{k},
\end{aligned}
$$

with $\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} c(x)$.

The derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

$$
\begin{aligned}
\min _{d \in \mathbb{R}^{n}} & \nabla \hat{f}^{k}\left(x^{k}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla_{x, x}^{2} \hat{\mathcal{L}}^{k}\left(x^{k}, \lambda^{k}\right) d \\
\text { s.t. } & \hat{c}^{k}\left(x^{k}\right)+\nabla \hat{c}^{k}\left(x^{k}\right) d \leq 0, \\
& l \leq x^{k}+d \leq u, \\
& \|d\| \leq \Delta^{k},
\end{aligned}
$$

with $\hat{\mathcal{L}}^{k}(x, \lambda)=\hat{f}^{k}(x)+\lambda^{\top} \hat{c}^{k}(x)$, given some models \hat{f}^{k} and \hat{c}^{k}.

Remarks on this subproblem

- We only require an approximate solution d^{k}.
- The solution must satisfy $l \leq x^{k}+d^{k} \leq u$.
- The subproblem may be infeasible. What is a solution?

A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust regionReduced trust region
Linear constraints

[^1]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust regionReduced trust region
Linear constraints

[^2]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region

- Reduced trust region

Linear constraints

[^3]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region
Reduced trust region
Linear constraints
Feasible region for t^{k}

[^4]
A new ByRd-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region
Reduced trust region
Linear constraints
Feasible region for t^{k}

The standard approach ${ }^{2}$ vs. the new one.

[^5]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region
Reduced trust region
Linear constraints
Feasible region for t^{k}

[^6]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region
Reduced trust region
Linear constraints
Feasible region for t^{k}

[^7]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region
Reduced trust region
Linear constraints
Feasible region for t^{k}

[^8]
A NEW BYRD-OMOJOKUN APPROACH

We compute $d^{k}=n^{k}+t^{k}$, where

- the normal step n^{k} reduces the (possible) constraint violation, and
- the tangential step t^{k} reduces the quadratic objective function.

O Trust region

- Reduced trust region

Linear constraints
Feasible region for t^{k}

The feasible region for t^{k} is wider in the new approach.

[^9]
A new Byrd-OMOJokun approach (cont'd)

The standard approach is as follows.

- The normal step n^{k} solves approximately (for some $\zeta<1$)

$$
\begin{aligned}
\min _{d \in \mathbb{R}^{n}} & \left\|\left[\hat{c}^{k}\left(x^{k}\right)+\nabla \hat{c}^{k}\left(x^{k}\right) d\right]^{+}\right\| \\
\text {s.t. } & l \leq x^{k}+d \leq u \\
& \|d\| \leq \zeta \Delta^{k} .
\end{aligned}
$$

- The tangential step t^{k} solves approximately

$$
\begin{aligned}
\min _{d \in \mathbb{R}^{n}} & {\left[\nabla \hat{f}^{k}\left(x^{k}\right)+\nabla_{x, x}^{2} \hat{\mathcal{L}}^{k}\left(x^{k}, \lambda^{k}\right) n^{k}\right]^{\top} d+\frac{1}{2} d^{\top} \nabla_{x, x}^{2} \hat{\mathcal{L}}^{k}\left(x^{k}, \lambda^{k}\right) d } \\
\text { s.t. } & \nabla \hat{c}^{k}\left(x^{k}\right)^{\top} d \leq 0, \\
& l \leq x^{k}+n^{k}+d \leq u, \\
& \left\|n^{k}+d\right\| \leq \Delta^{k} .
\end{aligned}
$$

A new Byrd-OMOJokun approach (cont'd)

The new approach is as follows.

- The normal step n^{k} solves approximately (for some $\zeta<1$)

$$
\begin{array}{cl}
\min _{d \in \mathbb{R}^{n}} & \left\|\left[\hat{c}^{k}\left(x^{k}\right)+\nabla \hat{c}^{k}\left(x^{k}\right) d\right]^{+}\right\| \\
\text {s.t. } & l \leq x^{k}+d \leq u \\
& \|d\| \leq \zeta \Delta^{k} .
\end{array}
$$

- The tangential step t^{k} solves approximately

$$
\begin{aligned}
\min _{d \in \mathbb{R}^{n}} & {\left[\nabla \hat{f}^{k}\left(x^{k}\right)+\nabla_{x, x}^{2} \hat{\mathcal{L}}^{k}\left(x^{k}, \lambda^{k}\right) n^{k}\right]^{\top} d+\frac{1}{2} d^{\top} \nabla_{x, x}^{2} \hat{\mathcal{L}}^{k}\left(x^{k}, \lambda^{k}\right) d } \\
\text { s.t. } & \nabla \hat{c}^{k}\left(x^{k}\right)^{\top} d \leq\left[\hat{c}^{k}\left(x^{k}\right)+\nabla \hat{c}^{k}\left(x^{k}\right) n^{k}\right]^{-}, \\
& l \leq x^{k}+n^{k}+d \leq u, \\
& \left\|n^{k}+d\right\| \leq \Delta^{k} .
\end{aligned}
$$

Interpolation-based models

INTERPOLATION-BASED QUADRATIC MODELS

COBYQA models f and c by quadratic interpolation, as follows. ${ }^{3}$

Derivative-free symmetric Broyden update (Powell 2004)

The k th model \hat{f}^{k} of f solves

$$
\begin{array}{ll}
\min _{Q} & \left\|\nabla^{2} \hat{f}^{k-1}-\nabla^{2} Q\right\|_{\mathrm{F}} \\
\text { s.t. } & Q(y)=f(y), y \in \mathcal{Y}^{k}
\end{array}
$$

for some $\mathcal{Y}^{k} \subseteq \mathbb{R}^{n}$, with $\hat{f}^{-1} \equiv 0$. The model \hat{c}^{k} of c is built similarly.
The interpolation set \mathcal{Y}^{k} is recycled at each iteration.

- The set \mathcal{Y}^{k+1} is built as $\left(\mathcal{Y}^{k} \backslash \bar{y}\right) \cup\left\{x^{k}+d^{k}\right\}$ for some $\bar{y} \in \mathcal{Y}^{k}$.
- The KKT system of this variational problem is linear.

[^10]MANY DIFFICULTIES ARISE

A LOT OF QUESTIONS MUST BE ADDRESSED

- How to calculate the steps n^{k} and t^{k} numerically? COBYQA adapts the truncated conjugate gradient method.
- What is the approximate Lagrange multiplier λ^{k} ? We choose the least-squares Lagrange multiplier.
- Which merit function should we use? COBYQA uses the ℓ_{2}-merit function.
- How to update the penalty parameter?

The update incorporates

- a theoretical value for the exactness of the merit function, and
- a strategy used by Powell in COBYLA.

These questions (and more) are addressed in Ragonneau (2022).

A CRUCIAL DIFFICULTY IN THE IMPLEMENTATION

- What if the interpolation set \mathcal{Y}^{k} is almost nonpoised?

A well-known approach: using a geometry-improving mechanism. ${ }^{4}$

This is a central difficulty in the implementation of DFO methods

- The iterates $\left\{x^{k}\right\}$ likely lie on a particular path.
- The modeling process does not ponder the optimization problem.

[^11]IMPLEMENTATION AND EXPERIMENTS

The Python implementation of COBYQA

A quote from Powell (2006)
"The development of NEWUOA has taken nearly three years. The work was very frustrating [...]"

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.

Documentation

Source code

Comparing CobYQA with existing dFo solvers

- We assess the quality of points based on

$$
\varphi(x)= \begin{cases}f(x) & \text { if } v_{\infty}(x) \leq 10^{-10} \\ \infty & \text { if } v_{\infty}(x) \geq 10^{-5} \\ f(x)+10^{5} v_{\infty}(x) & \text { otherwise }\end{cases}
$$

where v_{∞} denotes the ℓ_{∞}-constraint violation.

- The problems are from the CUTEst set.
- The problems are of dimension at most 50 (this is not small).
- The noisy problems replace f with

$$
\tilde{f}(x)=[1+\epsilon(x)] f(x),
$$

where $\epsilon(x) \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Performance of the new Byrd-Omojokun approach

We compare the new and the standard Byrd-Omojokun approaches

- on linearly and nonlinearly constrained problems,
- in the implementation of COBYQA.

PERFORMANCE ON BOUND-CONSTRAINED PROBLEMS

We compare COBYQA, COBYLA, and two implementations of BOBYQA

- on bound-constrained problems,

PERFORMANCE ON BOUND-CONSTRAINED PROBLEMS

We compare COBYQA, COBYLA, and two implementations of BOBYQA

- on bound-constrained problems,
- adding noise to f, with $\sigma=10^{-3}$.

PERFORMANCE ON NONLINEARLY CONSTRAINED PROBLEMS

We compare COBYQA and COBYLA

- on nonlinearly constrained problems,

PERFORMANCE ON NONLINEARLY CONSTRAINED PROBLEMS

We compare COBYQA and COBYLA

- on nonlinearly constrained problems,
- adding noise to f, with $\sigma=10^{-3}$.

COMPARISON wITH COBYLA

We compare COBYQA and COBYLA on all problems.

Conclusion

CONCLUSION

- COBYQA already received positive feedback from practitioners.
- It will soon be included in
- PDFO as a successor for COBYLA, and
- GEMSEO, an industrial software package for MDO.
- We will soon investigate the convergence properties of COBYQA.

For more information, visit:

COBYQA's website

My website

My thesis

References I

- Audet, C. and Orban, D. (2006). "Finding optimal algorithmic parameters using derivative-free optimization". SIAM J. Optim. 17, pp. 642-664.
- Bandeira, A. S., Scheinberg, K., and Vicente, L. N. (2012). "Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization". Math. Program. 134, pp. 223-257.
- Byrd, R. H. (1987). "Robust trust region methods for constrained optimization". In: The Third SIAM Conference on Optimization.
- Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (2000). Trust-Region Methods. MPS-SIAM Ser. Optim. Philadelphia, PA, US: SIAM.

References II

- Conn, A. R., Scheinberg, K., and Toint, Ph. L. (1997a). "On the convergence of derivative-free methods for unconstrained optimization". In: Approximation Theory and Optimization: Tributes to M. J. D. Powell. Ed. by M. D. Buhmann and A. Iserles. Cambridge, UK: Cambridge University Press, pp. 83-108.
- - (1997b). "Recent progress in unconstrained nonlinear optimization without derivatives". Math. Program. 79, pp. 397-414.
- - (1998). "A derivative free optimization algorithm in practice". In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, US: AIAA, pp. 129-139.

References III

- Conn, A. R., Scheinberg, K., and Vicente, L. N. (2008a). "Geometry of interpolation sets in derivative free optimization". Math. Program. 111, pp. 141-172.
- - (2008b). "Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation". IMA J. Numer. Anal. 28, pp. 721-748.
- Fasano, G., Morales, J. L., and Nocedal, J. (2009). "On the geometry phase in model-based algorithms for derivative-free optimization". Optim. Methods Softw. 24, pp. 145-154.
- Gazaix, A. et al. (2019). "Industrial application of an advanced bi-level MDO formulation to aircraft engine pylon optimization". In: AIAA Aviation Forum. Dallas, TX, US: AIAA.

References IV

- Ghanbari, H. and Scheinberg, K. (2017). Black-box optimization in machine learning with trust region based derivative free algorithm. Tech. rep. 17T-005. Bethlehem, PA, US: COR@L.
- Omojokun, E. O. (1989). "Trust Region Algorithms for Optimization with Nonlinear Equality and Inequality Constraints". Ph.D. thesis. Boulder, CO, US: University of Colorado Boulder.
- Powell, M. J. D. (1994). "A direct search optimization method that models the objective and constraint functions by linear interpolation". In: Advances in Optimization and Numerical Analysis. Ed. by S. Gomez and J. P. Hennart. Dordrecht, NL: Springer, pp. 51-67.
- - (2004). "Least Frobenius norm updating of quadratic models that satisfy interpolation conditions". Math. Program. 100, pp. 183-215.

References V

- Powell, M. J. D. (2006). "The NEWUOA software for unconstrained optimization without derivatives". In: Large-Scale Nonlinear Optimization. Ed. by G. Di Pillo and M. Roma. New York, NY, US: Springer, pp. 255-297.
- Ragonneau, T. M. (2022). "Model-Based Derivative-Free Optimization Methods and Software". Ph.D. thesis. Hong Kong: Department of Applied Mathematics, The Hong Kong Polytechnic University.
- Wild, S. M. (2008). "MNH: a derivative-free optimization algorithm using minimal norm Hessians". In: The Tenth Copper Mountain Conference on Iterative Methods.
- Xie, P. and Yuan, Y. (2023). Least H^{2} norm updating quadratic interpolation model function for derivative-free trust-region algorithms. arXiv: 2302.12017 [math.0C].

References vi

- Zhang, Z. (2014). "Sobolev seminorm of quadratic functions with applications to derivative-free optimization". Math. Program. 146, pp. 77-96.

This work is licensed under a Creative Commons Attribution-Sharealike 4.0 International license.

The source code of this presentation is available at
github.com/ragonneau/cse23.

It is based on the metropolis Beamer theme, available at

> github.com/matze/mtheme.

[^0]: ${ }^{1}$ The equality constraints are omitted here for simplicity.

[^1]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^2]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^3]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^4]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^5]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^6]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^7]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^8]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^9]: ${ }^{2}$ Conn, Gould, and Toint (2000, §15.4.4).

[^10]: ${ }^{3}$ Other methods: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild (2008), Bandeira, Scheinberg, and Vicente (2012), Zhang (2014), Xie and Yuan (2023).

[^11]: ${ }^{4}$ Conn, Scheinberg, and Vicente (2008a,b), Fasano, Morales, and Nocedal (2009).

