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GENERAL CONTEXT

We design a method named COBYQA for solving1

min
x∈Rn

f(x)

s.t. c(x) ≤ 0,

l ≤ x ≤ u,

where derivatives of f and c are unavailable.

Notes on the method

• COBYQA aims at being a successor to COBYLA (Powell 1994).
• We implement COBYQA into a Python solver.
• The bound constraints are handled separately.

1The equality constraints are omitted here for simplicity.
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https://pypi.org/project/cobyqa/


INVIOLABLE BOUND CONSTRAINTS

The bound constraints l ≤ x ≤ u are assumed inviolable

• They often represent inalienable restrictions.
• f or c may not be defined otherwise.

Therefore, COBYQA always respects the bound constraints.

A few examples from academia and industry

• Optimization method tuning (Audet and Orban 2006).
• Hyperparameter tuning (Ghanbari and Scheinberg 2017).
• Aircraft engineering (Gazaix et al. 2019).
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THE GENERAL FRAMEWORK



THE DERIVATIVE-FREE TRUST-REGION SQP METHOD

COBYQA iteratively solves the trust-region SQP subproblem

min
d∈Rn

∇f(xk)Td+
1

2
dT∇2

x,xL(xk, λk)d

s.t. c(xk) +∇c(xk)d ≤ 0,

l ≤ xk + d ≤ u,

∥d∥ ≤ ∆k,

with L(x, λ) = f(x) + λTc(x).

Remarks on this subproblem

• We only require an approximate solution dk .
• The solution must satisfy l ≤ xk + dk ≤ u.
• The subproblem may be infeasible. What is a solution?
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THE DERIVATIVE-FREE TRUST-REGION SQP METHOD

COBYQA iteratively solves the trust-region SQP subproblem

min
d∈Rn

∇f̂k(xk)Td+
1

2
dT∇2

x,xL̂k(xk, λk)d

s.t. ĉk(xk) +∇ĉk(xk)d ≤ 0,

l ≤ xk + d ≤ u,

∥d∥ ≤ ∆k,

with L̂k(x, λ) = f̂k(x) + λTĉk(x), given some models f̂k and ĉk .

Remarks on this subproblem

• We only require an approximate solution dk .
• The solution must satisfy l ≤ xk + dk ≤ u.
• The subproblem may be infeasible. What is a solution?
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A NEW BYRD-OMOJOKUN APPROACH

We compute dk = nk + tk , where

• the normal step nk reduces the (possible) constraint violation, and
• the tangential step tk reduces the quadratic objective function.

tk

dk

tk
dk

nk

nk

xk

Trust region
Reduced trust region

Linear constraints

Feasible region for tk

The standard approach2 vs. the new one.

The feasible region for tk is wider in the new approach.

2Conn, Gould, and Toint (2000, §15.4.4).
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A NEW BYRD-OMOJOKUN APPROACH (CONT’D)

The standard approach is as follows.

• The normal step nk solves approximately (for some ζ < 1)

min
d∈Rn

∥∥[ĉk(xk) +∇ĉk(xk)d
]+∥∥

s.t. l ≤ xk + d ≤ u,

∥d∥ ≤ ζ∆k.

• The tangential step tk solves approximately

min
d∈Rn

[
∇f̂k(xk) +∇2

x,xL̂k(xk, λk)nk
]T
d+

1

2
dT∇2

x,xL̂k(xk, λk)d

s.t. ∇ĉk(xk)Td ≤ 0,

l ≤ xk + nk + d ≤ u,

∥nk + d∥ ≤ ∆k.
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A NEW BYRD-OMOJOKUN APPROACH (CONT’D)

The new approach is as follows.

• The normal step nk solves approximately (for some ζ < 1)

min
d∈Rn

∥∥[ĉk(xk) +∇ĉk(xk)d
]+∥∥

s.t. l ≤ xk + d ≤ u,

∥d∥ ≤ ζ∆k.

• The tangential step tk solves approximately

min
d∈Rn

[
∇f̂k(xk) +∇2

x,xL̂k(xk, λk)nk
]T
d+

1

2
dT∇2

x,xL̂k(xk, λk)d

s.t. ∇ĉk(xk)Td ≤ [ĉk(xk) +∇ĉk(xk)nk]−,

l ≤ xk + nk + d ≤ u,

∥nk + d∥ ≤ ∆k.
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INTERPOLATION-BASED MODELS



INTERPOLATION-BASED QUADRATIC MODELS

COBYQA models f and c by quadratic interpolation, as follows.3

Derivative-free symmetric Broyden update (Powell 2004)
The kth model f̂k of f solves

min
Q

∥∥∇2f̂k−1 −∇2Q
∥∥
F

s.t. Q(y) = f(y), y ∈ Yk,

for some Yk ⊆ Rn, with f̂−1 ≡ 0. The model ĉk of c is built similarly.

The interpolation set Yk is recycled at each iteration.

• The set Yk+1 is built as (Yk \ ȳ) ∪ {xk + dk} for some ȳ ∈ Yk .
• The KKT system of this variational problem is linear.

3Other methods: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild (2008), Bandeira,
Scheinberg, and Vicente (2012), Zhang (2014), Xie and Yuan (2023).
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MANY DIFFICULTIES ARISE



A LOT OF QUESTIONS MUST BE ADDRESSED

• How to calculate the steps nk and tk numerically?
COBYQA adapts the truncated conjugate gradient method.

• What is the approximate Lagrange multiplier λk?
We choose the least-squares Lagrange multiplier.

• Which merit function should we use?
COBYQA uses the ℓ2-merit function.

• How to update the penalty parameter?
The update incorporates

• a theoretical value for the exactness of the merit function, and
• a strategy used by Powell in COBYLA.

These questions (and more) are addressed in Ragonneau (2022).
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A CRUCIAL DIFFICULTY IN THE IMPLEMENTATION

• What if the interpolation set Yk is almost nonpoised?
A well-known approach: using a geometry-improving mechanism.4

This is a central difficulty in the implementation of DFO methods

Modeling
process

Optimization
process

Often inhibit

each other

• The iterates {xk} likely lie on a particular path.
• The modeling process does not ponder the optimization problem.

4Conn, Scheinberg, and Vicente (2008a,b), Fasano, Morales, and Nocedal (2009).
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IMPLEMENTATION AND EXPERIMENTS



THE PYTHON IMPLEMENTATION OF COBYQA

A quote from Powell (2006)
“The development of NEWUOA has taken nearly three years. The work
was very frustrating [...]”

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.

 

 

Documentation
 

 

Source code
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https://www.cobyqa.com/
https://www.cobyqa.com/
https://github.com/cobyqa/cobyqa/
https://github.com/cobyqa/cobyqa/


COMPARING COBYQA WITH EXISTING DFO SOLVERS

• We assess the quality of points based on

φ(x) =


f(x) if v∞(x) ≤ 10−10,
∞ if v∞(x) ≥ 10−5,
f(x) + 105v∞(x) otherwise,

where v∞ denotes the ℓ∞-constraint violation.
• The problems are from the CUTEst set.
• The problems are of dimension at most 50 (this is not small).
• The noisy problems replace f with

f̃(x) =
[
1 + ϵ(x)

]
f(x),

where ϵ(x) ∼ N (0, σ2).
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PERFORMANCE OF THE NEW BYRD-OMOJOKUN APPROACH

We compare the new and the standard Byrd-Omojokun approaches

• on linearly and nonlinearly constrained problems,
• in the implementation of COBYQA.
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PERFORMANCE ON BOUND-CONSTRAINED PROBLEMS

We compare COBYQA, COBYLA, and two implementations of BOBYQA

• on bound-constrained problems,

• adding noise to f , with σ = 10−3.
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PERFORMANCE ON NONLINEARLY CONSTRAINED PROBLEMS

We compare COBYQA and COBYLA

• on nonlinearly constrained problems,

• adding noise to f , with σ = 10−3.
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COMPARISON WITH COBYLA

We compare COBYQA and COBYLA on all problems.
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CONCLUSION



CONCLUSION

• COBYQA already received positive feedback from practitioners.
• It will soon be included in

• PDFO as a successor for COBYLA, and
• GEMSEO, an industrial software package for MDO.

• We will soon investigate the convergence properties of COBYQA.

For more information, visit:

 

 

COBYQA’s website
 

 

My website
 

 

My thesis
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https://www.pdfo.net/
https://gemseo.readthedocs.io/
https://www.cobyqa.com/
https://www.cobyqa.com/
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https://tomragonneau.com/documents/thesis.pdf
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github.com/matze/mtheme.
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