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GENERAL CONTEXT

We design a method named COBYQA for solving'

Inin  f(z)
sit. c(z) <0,
[ <x<u,

where derivatives of f and ¢ are unavailable.

Notes on the method
- COBYQA aims at being a successor to COBYLA (Powell 1994).
- We implement COBYQA into a Python solver.
- The bound constraints are handled separately.

'The equality constraints are omitted here for simplicity.

116


https://pypi.org/project/cobyqa/

INVIOLABLE BOUND CONSTRAINTS

The bound constraints [ < z < « are assumed inviolable

- They often represent inalienable restrictions.

- f or ¢ may not be defined otherwise.

Therefore, COBYQA always respects the bound constraints.

A few examples from academia and industry

- Optimization method tuning (Audet and Orban 2006).
- Hyperparameter tuning (Ghanbari and Scheinberg 2017).
- Aircraft engineering (Gazaix et al. 2019).

2/16



TABLE OF CONTENTS

1. The general framework

2. Interpolation-based models

3. Many difficulties arise

4. Implementation and experiments

5. Conclusion

3/16



THE GENERAL FRAMEWORK



THE DERIVATIVE-FREE TRUST-REGION SQP METHOD

COBYQA iteratively solves the trust-region SQP subproblem

1
: T 7 2 T2 prok vk
Inin V) d+ 2d Vi L@, AY)d

s.t. c(z®) + Ve(@®)d <0,
I<af+d<u,
ldll < A*,

with L(z,\) = f(z) + ATe(z).
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THE DERIVATIVE-FREE TRUST-REGION SQP METHOD

COBYQA iteratively solves the trust-region SQP subproblem

. 1 ;
: k(0 kT T2 pkik Kk
min V(@) d+ 5d VL (28 AN)d
st &(2F) + véF(2F)d <0,

[ <ab+d<u,

]| < A*,
with £%(z, A) = f*(z) + AT¢#(x), given some models f* and é*.

Remarks on this subproblem

- We only require an approximate solution d*.
- The solution must satisfy I < zF + d* < w.

- The subproblem may be infeasible. What is a solution?
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A NEW BYRD-OMOJOKUN APPROACH

We compute d* = n* + t*, where
- the normal step n* reduces the (possible) constraint violation, and

- the tangential step t* reduces the quadratic objective function.

(O Trust region
"+ Reduced trust region

Linear constraints

The standard approach? vs. the new one.

2Conn, Gould, and Toint (2000, §15.4.4).
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A NEW BYRD-OMOJOKUN APPROACH

We compute d* = n* + t*, where

- the normal step n* reduces the (possible) constraint violation, and
- the tangential step t* reduces the quadratic objective function.

(O Trust region
" Reduced trust region
Linear constraints

Feasible region for t*

The standard approach? vs. the new one.

The feasible region for ¢* is wider in the new approach.
2Conn, Gould, and Toint (2000, §15.4.4).
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A NEW BYRD-OMOJOKUN APPROACH (CONT'D)

The standard approach is as follows.

- The normal step n* solves approximately (for some ¢ < 1)

min  [[#(z) + Ver(@h)d] |
s.t. lgzk—l-dgu,

ld]] < ¢A*.
- The tangential step t* solves approximately

A~ 3 ~ : 1 R
min  [Vf*@a*) + V2 L5, A yn*]"d + 5dTV5 LN @M W)
e n ’ 9
st VéR(@F)Td <0,
[<ab+nf+d<u,

¥+ d < A",
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A NEW BYRD-OMOJOKUN APPROACH (CONT'D)

The new approach is as follows.

- The normal step n* solves approximately (for some ¢ < 1)
. k(K &k (k) d +
min  [[&"(a") + Vet at)d] |
s.t. lgzk—l-dgu,
ld]] < ¢A*.

- The tangential step t* solves approximately

~ ~ 1 ~
min [V /*(2") + V2, £ (2", A )n]Td + 5dV2 LA (@*, N)d

deRn
st VER(a?)Td < [¢F(aF) + Ve (aF)nh],
I<zF+nF4d<u,
In" +d|| < A*.
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INTERPOLATION-BASED MODELS




INTERPOLATION-BASED QUADRATIC MODELS

COBYQA models f and ¢ by quadratic interpolation, as follows.?

Derivative-free symmetric Broyden update (Powell 2004)
The kth model f* of f solves

min [[V241 - v2Q)|,

st Qy) = f(y) y e V",
for some Y* C R™, with £~ = 0. The model é" of ¢ is built similarly.
The interpolation set Y* is recycled at each iteration.

- The set Y¥+1 is built as (Y* \ g) U {=* + d*} for some 5 € Y*.

- The KKT system of this variational problem is linear.

30ther methods: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild (2008), Bandeira,
Scheinberg, and Vicente (2012), Zhang (2014), Xie and Yuan (2023).
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MANY DIFFICULTIES ARISE




A LOT OF QUESTIONS MUST BE ADDRESSED

- How to calculate the steps n* and t* numerically?
COBYQA adapts the truncated conjugate gradient method.

- What is the approximate Lagrange multiplier A\¥?
We choose the least-squares Lagrange multiplier.
- Which merit function should we use?
COBYQA uses the Z5-merit function.

- How to update the penalty parameter?
The update incorporates
- a theoretical value for the exactness of the merit function, and
- a strategy used by Powell in COBYLA.

These questions (and more) are addressed in Ragonneau (2022).
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A CRUCIAL DIFFICULTY IN THE IMPLEMENTATION

- What if the interpolation set Y* is almost nonpoised?
A well-known approach: using a geometry-improving mechanism.*

This is a central difficulty in the implementation of DFO methods

Often inhibit
Modeling Optimization
process process

each other

- The iterates {z*} likely lie on a particular path.

- The modeling process does not ponder the optimization problem.

“Conn, Scheinberg, and Vicente (2008a,b), Fasano, Morales, and Nocedal (2009).
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IMPLEMENTATION AND EXPERIMENTS




THE PYTHON IMPLEMENTATION OF COBYQA

A quote from Powell (2006)

“The development of NEWUOA has taken nearly three years. The work
was very frustrating [...]"”

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.

:I"”i :I
%E'E

Documentation Source code
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https://www.cobyqa.com/
https://www.cobyqa.com/
https://github.com/cobyqa/cobyqa/
https://github.com/cobyqa/cobyqa/

COMPARING COBYQA WITH EXISTING DFO SOLVERS

- We assess the quality of points based on

fx) if v (z) < 10710,
o(x) = < oo if Voo () > 1075,
f(z) + 10%vso(x) otherwise,

where v, denotes the ¢..-constraint violation.
- The problems are from the CUTEst set.
- The problems are of dimension at most 50 (this is not small).

- The noisy problems replace f with

f@) = [1+e(@)] f(2),

where e(z) ~ N(0,02?).
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PERFORMANCE OF THE NEW BYRD-OMOJOKUN APPROACH

We compare the new and the standard Byrd-Omojokun approaches

- on linearly and nonlinearly constrained problems,
- in the implementation of COBYQA.

1 T
— ——
T 08} i
o
— | -
Il oo oooocoaasd
* 06F,------ -
1%} - -
o
Lg 0.4 | -
o - -
[Ty
o 0.2 New u
(8%,
» - - - Standard
0 | | [ [
0 1 2 3 4

log, (perf. ratio)
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PERFORMANCE ON BOUND-CONSTRAINED PROBLEMS

We compare COBYQA, COBYLA, and two implementations of BOBYQA

- on bound-constrained problems,
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PERFORMANCE ON BOUND-CONSTRAINED PROBLEMS

We compare COBYQA, COBYLA, and two implementations of BOBYQA

- on bound-constrained problems,
- adding noise to f, with o = 1073.
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PERFORMANCE ON NONLINEARLY CONSTRAINED PROBLEMS

We compare COBYQA and COBYLA

- on nonlinearly constrained problems,
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CoMPARISON WITH COBYLA

We compare COBYQA and COBYLA on all problems.
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CONCLUSION




CONCLUSION

- COBYQA already received positive feedback from practitioners.
- It will soon be included in

- PDFO as a successor for COBYLA, and
- GEMSEQ, an industrial software package for MDO.

- We will soon investigate the convergence properties of COBYQA.

E&EE B
.

COBYQA's website My website My thesis

For more information, visit:
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https://www.pdfo.net/
https://gemseo.readthedocs.io/
https://www.cobyqa.com/
https://www.cobyqa.com/
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github.com/ragonneau/cse23.
IT IS BASED ON THE METROPOLIS BEAMER THEME, AVAILABLE AT

github.com/matze/mtheme.


https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://github.com/ragonneau/cse23/
https://github.com/matze/mtheme/

	The general framework
	Interpolation-based models
	Many difficulties arise
	Implementation and experiments
	Conclusion
	Appendix

