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Derivative-free optimization (DFO)

- Minimize a function f using function values but no derivatives.

- f can be a black box resulting from experiments or simulations.

2z € Q) CR" —— SN f(z)

- f may be smooth, but Vf cannot be numerically evaluated.
- Evaluations of f are expensive.

- Closely related terms:

blackbox optimization
zeroth-order optimization
simulation-based optimization
gradient-free optimization
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An example of a DFO problem
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Hyperparameter tuning problem

- How to choose the hyperparameters?

- An idea: optimizing the testing accuracy. What is the gradient?
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General context

We design a method named COBYQA for solving

min  f(z)
s.t. g(x) <0, h(z) =0,

I <z <u,

when derivatives of f, g, and h are unavailable.
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General context

We design a method named COBYQA for solving

min  f(z)
st g() <0, hizy=T,
I <z <u,

when derivatives of f, g, and h are unavailable.

- We omit the equality constraints for simplicity.
- COBYQA aims at being a successor to COBYLA (Powell 1994).
- We implement COBYQA into a Python solver.

- The bound constraints are unrelaxable:

- They often represent inalienable restrictions.
- f, g, or h may not be well-defined outside the bounds.
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General framework of COBYQA




A derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

1
- T, 1. T2
min Vi(zk) s+ 55 Vi L(xp, A)s

s.t. g(zk) + Vg(zk)s <0,
I <zp+s < u,
l[sll < A,

with £(z,\) = f(z) + ATg(z).
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A derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

. 1 o
min Vi (zx) s + =5V, Li(zk, \i)S
sER™ 2
st. gr(zk) + Var(zk)s <0,

I <z +s < u,

”SH < Ak’
with £ (z, A) = f1(x) + ATgx(z), given some models f;, and gy.

- We only require an approximate solution sg.
- The solution must satisfy | < xp + s < w.
- See Schittkowski and Yuan (2011) and Yuan (2015).
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A derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

X 1 L
min V fr(ze)Ts + §sTfo,f,.£A.(xk, Ar)s

st.  gr(xx) + Vir(zx)s <0,
I <z +s < u,
”SH < Ak’

with £ (z, A) = f1(x) + ATgx(z), given some models f;, and gy.

- We only require an approximate solution sg.
- The solution must satisfy | < xp + s < w.
- See Schittkowski and Yuan (2011) and Yuan (2015).

The subproblem may be infeasible. What is a solution?
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A new Byrd-Omojokun approach

We compute s = ny + t, where
- the normal step ny reduces the (possible) constraint violation, and

- the tangential step t; reduces the quadratic objective function.

() Trust region

‘ {} Reduced trust region

Linear constraints

Standard approach’ vs. new one.

1See Conn, Gould, and Toint (2000, §15.4.4).
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A new Byrd-Omojokun approach

We compute s = ny + t, where

- the normal step ny reduces the (possible) constraint violation, and

- the tangential step t; reduces the quadratic objective function.

Q Trust region
Reduced trust region

Linear constraints
Feasible region for ¢,

Standard approach’ vs. new one.

The feasible region for ¢ is wider in the new approach.

1See Conn, Gould, and Toint (2000, §15.4.4).
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A new Byrd-Omojokun approach (cont’d)

Standard approach:

- The normal step ny, solves approximately (for some ¢ < 1)

min {3k (z) + Vau(2x)s] |
sit. [ <zp+s<u,

Is]l < ¢A.
- The tangential step ¢, solves approximately

. N 1 .
Iél]g}l [ka(xk) + Vimﬁk(l‘k, )\k)nk} TS + §STVix£k(lk, /\k)S
st Vir(ag)s <0,

I <zp+nr+s<u,
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A new Byrd-Omojokun approach (cont’d)

New approach:

- The normal step ny, solves approximately (for some ¢ < 1)

min {3k (z) + Vau(2x)s] |
sit. [ <zp+s<u,

Is]l < ¢A.
- The tangential step ¢, solves approximately

. N 1 .
Ig]g}l [ka(xk) + Vimﬁk(l‘k, )\k)nk} TS + §STVix£k(lk, /\k)S
S.t. ng(a?k)s < L(};,-(.’I’;l.) -+ VL(A];,.<.’I’;K.)77;,‘-} s

I <zp+nr+s<u,
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Interpolation-based models




Interpolation-based quadratic models

COBYQA builds quadratic models of f and ¢ by interpolation.
Derivative-free symmetric Broyden update (Powell 2004)
The kth model f; of f solves

min [V~ v2Q,

st. Q) = f(), y € Wk,

for some interpolation set Y, € R™ (similar for g).

- We recycle Viq1 = (Ve U{zr + si}) \ {g} for some bad point § € V.
- To compute fi, we only need to solve a linear system.

Some alternatives: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild
(2008), Custodio, Rocha, and Vicente (2010), Bandeira, Scheinberg, and
Vicente (2012), Zhang (2014), and Xie and Yuan (2023).
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Many difficulties arise




A lot of questions must be addressed

- How to calculate the steps n, and ¢, numerically?
COBYQA adapts the truncated conjugate gradient method.

- What is the approximate Lagrange multiplier A\;?
We choose the least-squares Lagrange multiplier.
- Which merit function should we use?
COBYQA uses the ¢o-merit function.

- How to update the penalty parameter?
The update incorporates
- a theoretical value for the exactness of the merit function, and
- a strategy used by Powell in COBYLA.

These questions (and many more) are addressed in Ragonneau (2022).
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A crucial difficulty in the implementation

- What if the interpolation set Y. is almost nonpoised?
A well-known approach: a geometry-improving mechanism.?

This is a central difficulty in the implementation of DFO methods

N Often inhibit .
Modeling Optimization
process process

J each other \

- The iterates {«*} likely lie on a particular path.

- The modeling process does not ponder the optimization problem.

2See Conn, Scheinberg, and Vicente (2008a,b) and Fasano, Morales, and Nocedal (2009).
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Management of the trust-region radius

We maintain A, and a lower bound §;, < Ay,
- The lower bound §j, is never increased.
- We update Ay, in the usual way, but we always have Ay > 5.
- This strategy is adapted from Powell (2006, 2009) and LINCOA.

The value of §;, is an indicator of the current resolution.

- Without Ay > 4, the value of Ax may become too small.
- It prevents the interpolation points from concentrating too much.
- The value of 0y is only decreased when necessary.

- Hence, stopping when 85, < fenq is reasonable (Seng > 0).
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Implementation and experiments




The Python implementation of COBYQA

From Powell (2006)

“The development of NEWUOA has taken nearly three years. The work
was very frustrating [...]"

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.
=] 53
-
T
-

www . cobyqga.com

$ pip install cobyqa
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https://www.cobyqa.com
https://www.cobyqa.com

Comparing COBYQA with existing DFO solvers

- We assess the quality of points based on the merit function

f(zx) if voo (z) < 10710,
if Voo (z) > 1075,
f(x) +10%v5(x) otherwise,

B}
&
[
8

where v, denotes the ¢, -constraint violation.
- The problems are from CUTEst (Gould, Orban, and Toint 2015).
- The problems are of dimension at most 50 (this is not small).
- Problems with unrelaxable bounds replace f with

fx) =

00 otherwise.

. {f@) ifl <z <u,
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Performance on linearly constrained problems

We compare COBYQA, LINCOA, and COBYLA

- on linearly constrained problems,
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Performance on linearly constrained problems

We compare COBYQA, LINCOA, and COBYLA

- on linearly constrained problems,
- with unrelaxable bounds.
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Performance on nonlinearly constrained problems

We compare COBYQA and COBYLA

- on nonlinearly constrained problems,

10—4)

Performance profiles (7

0.2 |-

0.8[’/_,4 — ===
0.6 .

0.4 |

—— COBYQA
- - - COBYLA +
| | [ [

22 23 2% 25

Performance ratios

15/17



Performance on nonlinearly constrained problems

We compare COBYQA and COBYLA

- on nonlinearly constrained problems,
- with unrelaxable bounds.
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Comparison with COBYLA

We compare COBYQA and COBYLA on all 388 problems.
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Conclusion




Conclusion

- COBYQA already received positive feedback from practitioners.
- It will soon be included in
- PDFO as a successor for COBYLA, and

- GEMSEQ, an industrial software package for MDO.

- We will soon investigate the convergence properties of COBYQA.

For more information, visit:
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My website
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