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Derivative-free optimization (DFO)

• Minimize a function f using function values but no derivatives.
• f can be a black box resulting from experiments or simulations.

x ∈ Ω ⊆ Rn f : Rn → R f(x)

• f may be smooth, but ∇f cannot be numerically evaluated.
• Evaluations of f are expensive.
• Closely related terms:

blackbox optimization
zeroth-order optimization

simulation-based optimization
gradient-free optimization
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An example of a DFO problem
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parameters

Hyperparameter tuning problem
• How to choose the hyperparameters?
• An idea: optimizing the testing accuracy. What is the gradient?

2/17



An example of a DFO problem

Training
data

Testing
data

Machine
learning
model

Training
accuracy

Testing
accuracy

Hyper-
parameters

Hyperparameter tuning problem
• How to choose the hyperparameters?
• An idea: optimizing the testing accuracy. What is the gradient?

2/17



General context

We design a method named COBYQA for solving

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

l ≤ x ≤ u,

when derivatives of f , g, and h are unavailable.

• We omit the equality constraints for simplicity.
• COBYQA aims at being a successor to COBYLA (Powell 1994).
• We implement COBYQA into a Python solver.
• The bound constraints are unrelaxable:

• They often represent inalienable restrictions.
• f , g, or h may not be well-defined outside the bounds.
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General framework of COBYQA



A derivative-free trust-region SQP method

COBYQA iteratively solves the trust-region SQP subproblem

min
s∈Rn

∇f(xk)
Ts+

1

2
sT∇2

xxL(xk, λk)s

s.t. g(xk) +∇g(xk)s ≤ 0,

l ≤ xk + s ≤ u,

∥s∥ ≤ ∆k,

with L(x, λ) = f(x) + λTg(x).

• We only require an approximate solution sk .
• The solution must satisfy l ≤ xk + sk ≤ u.
• See Schittkowski and Yuan (2011) and Yuan (2015).

The subproblem may be infeasible. What is a solution?
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A new Byrd-Omojokun approach

We compute sk = nk + tk , where

• the normal step nk reduces the (possible) constraint violation, and
• the tangential step tk reduces the quadratic objective function.

tk
tk
nk

xk

Trust region
Reduced trust region

Linear constraints

Feasible region for tk

Standard approach1 vs. new one.

The feasible region for tk is wider in the new approach.

1See Conn, Gould, and Toint (2000, §15.4.4).
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A new Byrd-Omojokun approach (cont’d)

Standard approach:

• The normal step nk solves approximately (for some ζ < 1)

min
s∈Rn

∥∥[ĝk(xk) +∇ĝk(xk)s
]+∥∥

s.t. l ≤ xk + s ≤ u,

∥s∥ ≤ ζ∆k.

• The tangential step tk solves approximately

min
s∈Rn

[
∇f̂k(xk) +∇2

xxL̂k(xk, λk)nk

]T
s+

1

2
sT∇2

xxL̂k(xk, λk)s

s.t. ∇ĝk(xk)s ≤ 0,

l ≤ xk + nk + s ≤ u,

∥nk + s∥ ≤ ∆k.
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A new Byrd-Omojokun approach (cont’d)

New approach:

• The normal step nk solves approximately (for some ζ < 1)

min
s∈Rn

∥∥[ĝk(xk) +∇ĝk(xk)s
]+∥∥

s.t. l ≤ xk + s ≤ u,

∥s∥ ≤ ζ∆k.

• The tangential step tk solves approximately

min
s∈Rn

[
∇f̂k(xk) +∇2

xxL̂k(xk, λk)nk

]T
s+

1

2
sT∇2

xxL̂k(xk, λk)s

s.t. ∇ĝk(xk)s ≤ [ĝk(xk) +∇ĝk(xk)nk]
−,

l ≤ xk + nk + s ≤ u,

∥nk + s∥ ≤ ∆k.
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Interpolation-based models



Interpolation-based quadratic models

COBYQA builds quadratic models of f and g by interpolation.

Derivative-free symmetric Broyden update (Powell 2004)
The kth model f̂k of f solves

min
Q∈Qn

∥∥∇2f̂k−1 −∇2Q
∥∥
F

s.t. Q(y) = f(y), y ∈ Yk,

for some interpolation set Yk ⊆ Rn (similar for ĝk).

• We recycle Yk+1 = (Yk ∪ {xk + sk}) \ {ȳ} for some bad point ȳ ∈ Yk .
• To compute f̂k , we only need to solve a linear system.

Some alternatives: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild
(2008), Custódio, Rocha, and Vicente (2010), Bandeira, Scheinberg, and
Vicente (2012), Zhang (2014), and Xie and Yuan (2023).
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Many difficulties arise



A lot of questions must be addressed

• How to calculate the steps nk and tk numerically?
COBYQA adapts the truncated conjugate gradient method.

• What is the approximate Lagrange multiplier λk?
We choose the least-squares Lagrange multiplier.

• Which merit function should we use?
COBYQA uses the ℓ2-merit function.

• How to update the penalty parameter?
The update incorporates

• a theoretical value for the exactness of the merit function, and
• a strategy used by Powell in COBYLA.

These questions (and many more) are addressed in Ragonneau (2022).
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A crucial difficulty in the implementation

• What if the interpolation set Yk is almost nonpoised?
A well-known approach: a geometry-improving mechanism.2

This is a central difficulty in the implementation of DFO methods

Modeling
process

Optimization
process

Often inhibit

each other

• The iterates {xk} likely lie on a particular path.
• The modeling process does not ponder the optimization problem.

2See Conn, Scheinberg, and Vicente (2008a,b) and Fasano, Morales, and Nocedal (2009).
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Management of the trust-region radius

We maintain ∆k and a lower bound δk ≤ ∆k

• The lower bound δk is never increased.
• We update ∆k in the usual way, but we always have ∆k ≥ δk .
• This strategy is adapted from Powell (2006, 2009) and LINCOA.

The value of δk is an indicator of the current resolution.

• Without ∆k ≥ δk , the value of ∆k may become too small.
• It prevents the interpolation points from concentrating too much.
• The value of δk is only decreased when necessary.
• Hence, stopping when δk ≤ δend is reasonable (δend > 0).
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Implementation and experiments



The Python implementation of COBYQA

From Powell (2006)
“The development of NEWUOA has taken nearly three years. The work
was very frustrating […]”

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.

 

 

www.cobyqa.com

$ pip install cobyqa
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Comparing COBYQA with existing DFO solvers

• We assess the quality of points based on the merit function

φ(x) =


f(x) if v∞(x) ≤ 10−10,
∞ if v∞(x) ≥ 10−5,
f(x) + 105v∞(x) otherwise,

where v∞ denotes the ℓ∞-constraint violation.
• The problems are from CUTEst (Gould, Orban, and Toint 2015).
• The problems are of dimension at most 50 (this is not small).
• Problems with unrelaxable bounds replace f with

f̃(x) =

{
f(x) if l ≤ x ≤ u,
∞ otherwise.
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Performance on linearly constrained problems

We compare COBYQA, LINCOA, and COBYLA

• on linearly constrained problems,

• with unrelaxable bounds.
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Performance on nonlinearly constrained problems

We compare COBYQA and COBYLA

• on nonlinearly constrained problems,

• with unrelaxable bounds.
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Comparison with COBYLA

We compare COBYQA and COBYLA on all 388 problems.
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Conclusion



Conclusion

• COBYQA already received positive feedback from practitioners.
• It will soon be included in

• PDFO as a successor for COBYLA, and
• GEMSEO, an industrial software package for MDO.

• We will soon investigate the convergence properties of COBYQA.

For more information, visit:

 

 

COBYQA
 

 

My website
 

 

My thesis
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