
PDFO
A Cross-Platform MATLAB/Python Interface for Powell’s
Derivative-Free Optimization Solvers

Tom M. Ragonneau, joint work with Zaikun Zhang
July 21, 2021 (SIAM OP21, MS38)

Department of Applied Mathematics
The Hong Kong Polytechnic University
Funded by the Hong Kong Ph.D. Fellowship Scheme

mailto:tom.ragonneau@connect.polyu.hk
mailto:zaikun.zhang@polyu.edu.hk
https://cerg1.ugc.edu.hk/hkpfs/index.html

Table of contents

1. Introduction

2. Powell’s derivative-free solvers

3. The PDFO package

4. Summary and conclusion

1 / 14

Introduction

Derivative-free optimization (DFO)

• Minimize a function f using function values but not derivatives.
• f can be a black-box resulting from experiments or simulations.

x ∈ Ω ⊆ Rn f : Rn → R f(x)

• f may be smooth, but ∇f cannot be numerically evaluated.
• Evaluations of f can be noisy and expensive.

−2 −1 0 1 2

0

2

4

x

f
(x
)

Fairy tale
Reality

2 / 14

An example of DFO problem

Training
dataset

Testing
dataset

Machine
Learning
model

Training
accuracy

Testing
accuracy

Hyper-
params

How to optimize the accuracy of the model by tuning the
hyperparameters? What is the gradient of the performance of the
model (e.g., testing accuracy) with respect to the hyperparameters?

3 / 14

An example of DFO problem

Training
dataset

Testing
dataset

Machine
Learning
model

Training
accuracy

Testing
accuracy

Hyper-
params

How to optimize the accuracy of the model by tuning the
hyperparameters? What is the gradient of the performance of the
model (e.g., testing accuracy) with respect to the hyperparameters?

3 / 14

Powell’s derivative-free solvers

Two paradigms of methods

• Direct-search methods: sampling iteratively f at a finite number of
points and choosing the iterates using simple comparisons.

• Examples: Nelder-Mead, GPS, MADS, BFO, …

• Model-based methods: modeling iteratively f using simple
functions and choosing the iterates by minimizing the models.

• Globalization: embedded in trust-region or line-search frameworks.
• Examples: Powell’s solvers, DFO, ORBIT, BOOSTERS, DFO-LS, …

Idea of trust-region frameworks
Given a model fk of f around xk , the trial step dk approximates

argmin
{
fk(xk + d) : xk + d ∈ Ωk, ∥d∥ ≤ ∆k

}
,

where ∆k is the trust-region radius and Ωk ≈ Ω around xk . Accept
the trial point xk + dk if it satisfies some reduction condition, and
update the trust-region radius ∆k accordingly.

4 / 14

General overview of the Powell’s derivative-free solvers

Powell developed five derivative-free trust-region solvers.

Solvers References Constraint types Model types

COBYLA Powell (1994) nonlinear linear (FD1)
UOBYQA Powell (2002) unconstrained quadratic (FD)
NEWUOA Powell (2006) unconstrained quadratic (UD2)
BOBYQA Powell (2009) bounds quadratic (UD)
LINCOA Powell (2015) linear quadratic (UD)

1FD: obtained by fully-determined interpolations.
2UD: obtained by underdetermined interpolations.

Original implementation of the solvers
Powell implemented the five solvers in Fortran 77 …

5 / 14

Models for NEWUOA, BOBYQA, and LINCOA

Given a nondegenerate interpolation set Xk ⊆ Rn, the kth quadratic
model fk of the objective function f solves

min
∥∥∇2Q−∇2fk−1

∥∥
F

s.t. Q(x) = f(x), x ∈ Xk,

Q ∈ Qn,

where Qn is the set of quadratic functions in Rn.

• Typically, Xk has O(n) elements, instead of O(n2).
• At each iteration, at most one point of Xk is modified, causing an
at-most rank-2 update of the KKT matrix of the system.

• Geometry of Xk is maintained using Lagrange polynomials.

6 / 14

The PDFO package

Current version of the PDFO package

Interfaces for Powell’s solvers
PDFO provides MATLAB/Python interfaces for using Powell’s
derivative-free solvers.

• More languages will be added in the future.
• It supports Linux, MacOS, and even Windows.
• It is NOT a reimplementation, but rather interfaces
(reimplementation will come in the future)!

Visit PDFO homepage
https://www.pdfo.net/

7 / 14

https://www.pdfo.net/

Current version of the PDFO package

UOBYQA NEWUOA BOBYQA LINCOA COBYLA

Fortran source files (written by Powell)
Sources

MEX-files for MATLAB F2PY-files for PythonInterfaces

Problem preprocessing and type detectionProblem
handling

pdfo(fun, x0, ...)User
interface

8 / 14

Core features of PDFO

PDFO preprocesses a problem as follows
• Detect obvious infeasibility.
• Attempt to project the initial guess onto the feasible set for
linearly-constrained problems.

• Eliminate linear equality constraints (QR factorization).
• Reformulate the constraints to call the Powell’s solvers.
• Handle possible overflows and faults of the inputs.

Minor modifications to the Fortran source code have been made.

• The original COBYLA code may NOT return the best evaluated point.
• The original UOBYQA and LINCOA code might encounter infinite
cyclings on ill-conditioned problems.

• Other programming-related bugs have also been patched.

9 / 14

Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained problems of dimensions at most 10

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.

10 / 14

Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained problems of dimensions at most 50

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.

10 / 14

Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained noisy problems of dimensions at most 10

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.

10 / 14

A synthetic noisy nonsmooth problem i

Consider the noisy Rosenbrock-like nonsmooth function

f(x) =
(
1 + σe(x)

)
r(x) with r(x) =

n−1∑
i=1

4
∣∣xi+1 − x2

i

∣∣+ |1− xi|,

where e(x) ∼ N (0, 1) and σ ≥ 0. In our experiment:

• dimension is n = 10,
• constraints are −10 ≤ xi ≤ 1/i for all i = 1, 2, . . . , n,
• noise level is σ = 0.1,
• budget is 100 function evaluations, and
• number of random experiments is 20.

11 / 14

A synthetic noisy nonsmooth problem ii

12 / 14

A hyperparameter tuning problem

Similarly to Bradley (1997) and Ghanbari and Scheinberg (2017),
consider the following hyperparameter tuning problem: optimize the
AUC score5 of an SVM (2 hyperparameters) in binary classification on
given LIBSVM6 datasets.

Dataset “splice” (1, 000 data, 60 features)

Solvers No. evaluations AUC Scores Testing accuracies

PDFO 65 0.96 0.89

Random search 100 0.64 0.53

Random search 200 0.79 0.53

TPE (Bayesian) 100 0.50 0.50

5See Hanley and McNeil (1982).
6Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

13 / 14

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

A hyperparameter tuning problem

Similarly to Bradley (1997) and Ghanbari and Scheinberg (2017),
consider the following hyperparameter tuning problem: optimize the
AUC score5 of an SVM (2 hyperparameters) in binary classification on
given LIBSVM6 datasets.

Dataset “ijcnn1” (49, 990 data, 22 features)

Solvers No. evaluations AUC Scores Testing accuracies

PDFO 59 0.99 0.98

Random search 100 0.98 0.97

Random search 200 0.98 0.97

TPE (Bayesian) 100 0.98 0.98

5See Hanley and McNeil (1982).
6Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

13 / 14

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Summary and conclusion

Summary and conclusion

• We have developed an initial version of PDFO.
• It provides MATLAB/Python interfaces for Powell’s DFO solvers.
• Encouraging feedbacks are received from both academia and industry
(IRT Saint-Exupéry, Toulouse, France).

• We made brief comparisons with Bayesian optimization.

• We are now working on a new derivative-free trust-region method
for nonlinear constrained problems, to be included in PDFO.

Thank you!
Contact: tom.ragonneau@connect.polyu.hk.

14 / 14

mailto:tom.ragonneau@connect.polyu.hk

References i

▶ Bradley, A. P. (1997). “The use of the area under the ROC curve in the
evaluation of machine learning algorithms”. In: Pattern Recognit.
30, pp. 1145–1159.

▶ Dolan, E. D. and Moré, J. J. (2002). “Benchmarking optimization
software with performance profiles”. In: Math. Program. 91,
pp. 201–213.

▶ Ghanbari, H. and Scheinberg, K. (2017). Black-box optimization in
machine learning with trust region based derivative free
algorithm. Tech. rep. 17T-005. Bethlehem, PA, US: COR@L.

▶ Gould, N. I. M., Orban, D., and Toint, Ph. L. (2015). “CUTEst: a
constrained and unconstrained testing environment with safe
threads for mathematical optimization”. In: Comput. Optim. Appl.
60, pp. 545–557.

References ii

▶ Hanley, J. A. and McNeil, B. J. (1982). “The meaning and use of the
area under a receiver operating characteristic (ROC) curve”. In:
Radiology 143, pp. 29–36.

▶ Moré, J. J. and Wild, S. M. (2009). “Benchmarking derivative-free
optimization algorithms”. In: SIAM J. Optim. 20, pp. 172–191.

▶ Powell, M. J. D. (1994). “A direct search optimization method that
models the objective and constraint functions by linear
interpolation”. In: Advances in Optimization and Numerical
Analysis. Ed. by S. Gomez and J. P. Hennart. Dordrecht, NL:
Springer, pp. 51–67.

▶ (2002). “UOBYQA: unconstrained optimization by quadratic
approximation”. In: Math. Program. 92, pp. 555–582.

References iii

▶ Powell, M. J. D. (2006). “The NEWUOA software for unconstrained
optimization without derivatives”. In: Large-Scale Nonlinear
Optimization. Ed. by G. Di Pillo and M. Roma. New York, NY, US:
Springer, pp. 255–297.

▶ (2009). The BOBYQA algorithm for bound constrained
optimization without derivatives. Tech. rep. DAMTP 2009/NA06.
Cambridge, UK: Department of Applied Mathematics and
Theoretical Physics, University of Cambridge.

▶ (2015). “On fast trust region methods for quadratic models
with linear constraints”. In: Math. Program. Comput. 7, pp. 237–267.

	Introduction
	Powell's derivative-free solvers
	The PDFO package
	Summary and conclusion
	Appendix

