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Introduction



Derivative-free optimization (DFO)

• Minimize a function f using function values but not derivatives.
• f can be a black-box resulting from experiments or simulations.

x ∈ Ω ⊆ Rn f : Rn → R f(x)

• f may be smooth, but ∇f cannot be numerically evaluated.
• Evaluations of f can be noisy and expensive.
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An example of DFO problem
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How to optimize the accuracy of the model by tuning the
hyperparameters? What is the gradient of the performance of the
model (e.g., testing accuracy) with respect to the hyperparameters?
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Powell’s derivative-free solvers



Two paradigms of methods

• Direct-search methods: sampling iteratively f at a finite number of
points and choosing the iterates using simple comparisons.

• Examples: Nelder-Mead, GPS, MADS, BFO, …

• Model-based methods: modeling iteratively f using simple
functions and choosing the iterates by minimizing the models.

• Globalization: embedded in trust-region or line-search frameworks.
• Examples: Powell’s solvers, DFO, ORBIT, BOOSTERS, DFO-LS, …

Idea of trust-region frameworks
Given a model fk of f around xk , the trial step dk approximates

argmin
{
fk(xk + d) : xk + d ∈ Ωk, ∥d∥ ≤ ∆k

}
,

where ∆k is the trust-region radius and Ωk ≈ Ω around xk . Accept
the trial point xk + dk if it satisfies some reduction condition, and
update the trust-region radius ∆k accordingly.
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General overview of the Powell’s derivative-free solvers

Powell developed five derivative-free trust-region solvers.

Solvers References Constraint types Model types

COBYLA Powell (1994) nonlinear linear (FD1)
UOBYQA Powell (2002) unconstrained quadratic (FD)
NEWUOA Powell (2006) unconstrained quadratic (UD2)
BOBYQA Powell (2009) bounds quadratic (UD)
LINCOA Powell (2015) linear quadratic (UD)

1FD: obtained by fully-determined interpolations.
2UD: obtained by underdetermined interpolations.

Original implementation of the solvers
Powell implemented the five solvers in Fortran 77 …
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Models for NEWUOA, BOBYQA, and LINCOA

Given a nondegenerate interpolation set Xk ⊆ Rn, the kth quadratic
model fk of the objective function f solves

min
∥∥∇2Q−∇2fk−1

∥∥
F

s.t. Q(x) = f(x), x ∈ Xk,

Q ∈ Qn,

where Qn is the set of quadratic functions in Rn.

• Typically, Xk has O(n) elements, instead of O(n2).
• At each iteration, at most one point of Xk is modified, causing an
at-most rank-2 update of the KKT matrix of the system.

• Geometry of Xk is maintained using Lagrange polynomials.
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The PDFO package



Current version of the PDFO package

Interfaces for Powell’s solvers
PDFO provides MATLAB/Python interfaces for using Powell’s
derivative-free solvers.

• More languages will be added in the future.
• It supports Linux, MacOS, and even Windows.
• It is NOT a reimplementation, but rather interfaces
(reimplementation will come in the future)!

Visit PDFO homepage
https://www.pdfo.net/
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Current version of the PDFO package

UOBYQA NEWUOA BOBYQA LINCOA COBYLA

Fortran source files (written by Powell)
Sources

MEX-files for MATLAB F2PY-files for PythonInterfaces

Problem preprocessing and type detectionProblem
handling

pdfo(fun, x0, ...)User
interface
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Core features of PDFO

PDFO preprocesses a problem as follows
• Detect obvious infeasibility.
• Attempt to project the initial guess onto the feasible set for
linearly-constrained problems.

• Eliminate linear equality constraints (QR factorization).
• Reformulate the constraints to call the Powell’s solvers.
• Handle possible overflows and faults of the inputs.

Minor modifications to the Fortran source code have been made.

• The original COBYLA code may NOT return the best evaluated point.
• The original UOBYQA and LINCOA code might encounter infinite
cyclings on ill-conditioned problems.

• Other programming-related bugs have also been patched.

9 / 14



Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained problems of dimensions at most 10

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.
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Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained problems of dimensions at most 50

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.
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Comparison of the Powell’s solvers using PDFO

We tested PDFO using performance profiles3 on problems from the
CUTEst4 dataset of Gould, Orban, and Toint (2015).

Unconstrained noisy problems of dimensions at most 10

3See Dolan and Moré (2002) and Moré and Wild (2009).
4We used the PyCUTEst package by J. Fowkes and L. Roberts.
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A synthetic noisy nonsmooth problem i

Consider the noisy Rosenbrock-like nonsmooth function

f(x) =
(
1 + σe(x)

)
r(x) with r(x) =

n−1∑
i=1

4
∣∣xi+1 − x2

i

∣∣+ |1− xi|,

where e(x) ∼ N (0, 1) and σ ≥ 0. In our experiment:

• dimension is n = 10,
• constraints are −10 ≤ xi ≤ 1/i for all i = 1, 2, . . . , n,
• noise level is σ = 0.1,
• budget is 100 function evaluations, and
• number of random experiments is 20.
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A synthetic noisy nonsmooth problem ii
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A hyperparameter tuning problem

Similarly to Bradley (1997) and Ghanbari and Scheinberg (2017),
consider the following hyperparameter tuning problem: optimize the
AUC score5 of an SVM (2 hyperparameters) in binary classification on
given LIBSVM6 datasets.

Dataset “splice” (1, 000 data, 60 features)

Solvers No. evaluations AUC Scores Testing accuracies

PDFO 65 0.96 0.89

Random search 100 0.64 0.53

Random search 200 0.79 0.53

TPE (Bayesian) 100 0.50 0.50

5See Hanley and McNeil (1982).
6Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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A hyperparameter tuning problem

Similarly to Bradley (1997) and Ghanbari and Scheinberg (2017),
consider the following hyperparameter tuning problem: optimize the
AUC score5 of an SVM (2 hyperparameters) in binary classification on
given LIBSVM6 datasets.

Dataset “ijcnn1” (49, 990 data, 22 features)

Solvers No. evaluations AUC Scores Testing accuracies

PDFO 59 0.99 0.98

Random search 100 0.98 0.97

Random search 200 0.98 0.97

TPE (Bayesian) 100 0.98 0.98

5See Hanley and McNeil (1982).
6Available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Summary and conclusion



Summary and conclusion

• We have developed an initial version of PDFO.
• It provides MATLAB/Python interfaces for Powell’s DFO solvers.
• Encouraging feedbacks are received from both academia and industry
(IRT Saint-Exupéry, Toulouse, France).

• We made brief comparisons with Bayesian optimization.

• We are now working on a new derivative-free trust-region method
for nonlinear constrained problems, to be included in PDFO.

Thank you!
Contact: tom.ragonneau@connect.polyu.hk.
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