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GENERAL CONTEXT

We design a method named COBYQA for solving

min
x∈Rn

f(x) s.t.


g(x) ≤ 0,
h(x) = 0,
l ≤ x ≤ u,

where derivatives of f , g, and h are unavailable.

Notes on the method

• COBYQA aims at being a successor to COBYLA (Powell 1994).
• We implement COBYQA into a Python solver.
• The bound constraints are assumed inviolable.

• They often represent inalienable restrictions.
• The functions f , g, and h may not be defined outside the bounds.
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GENERAL FRAMEWORK OF COBYQA



THE DERIVATIVE-FREE TRUST-REGION SQP METHOD

COBYQA iteratively solves the trust-region SQP subproblem

min
s∈Rn

f(xk) +∇f(xk)
Ts+

1

2
sT∇2

x,xL(xk, λk, µk)s

s.t.


g(xk) +∇g(xk)s ≤ 0,
h(xk) +∇h(xk)s = 0,
l ≤ xk + s ≤ u,
∥s∥ ≤ ∆k ,

with L(x, λ, µ) = f(x) + λTg(x) + µTh(x).

Remarks on this subproblem

• We only require an approximate solution sk .
• The solution must satisfy l ≤ xk + sk ≤ u.
• It is wrong to replace ∇2

x,xL̂k(xk, λk, µk) with ∇2f̂k(xk).
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Remarks on this subproblem

• We only require an approximate solution sk .
• The solution must satisfy l ≤ xk + sk ≤ u.
• It is wrong to replace ∇2

x,xL̂k(xk, λk, µk) with ∇2f̂k(xk).

3/19



INTERPOLATION-BASED QUADRATIC MODELS

COBYQA models f , g, and h by quadratic interpolation, as follows.1

Derivative-free symmetric Broyden update (Powell 2004)
The kth quadratic model f̂k of f solves

min
Q∈Qn

∥∥∇2Q−∇2f̂k−1

∥∥
F

s.t. Q(y) = f(y), y ∈ Yk ,

for some Yk ⊆ Rn, with f̂−1 ≡ 0 (similar for ĝk and ĥk).

The interpolation set Yk is recycled at each iteration.

• We set Yk+1 =
(
Yk ∪ {xk + sk}

)
\ {ȳ} for some bad point ȳ ∈ Yk .

• This variational problem is a QP, with a linear KKT system.
1Some alternatives: Conn, Scheinberg, and Toint (1997a,b, 1998), Wild (2008), Bandeira,
Scheinberg, and Vicente (2012), Zhang (2014), and Xie and Yuan (2023).
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MANAGEMENT OF THE TRUST-REGION RADIUS

We maintain ∆k and a lower bound δk ≤ ∆k

• The lower bound δk is never increased.
• We update ∆k in the usual way, but we always have ∆k ≥ δk .
• This strategy is adapted from Powell’s methods (e.g., NEWUOA).

The value of δk is an indicator of the current resolution.

• Without ∆k ≥ δk , the value of ∆k may become too small.
• It prevents the interpolation points from concentrating too much.
• The value of δk is only decreased when necessary.
• Hence, stopping when δk ≤ δend is reasonable (δend > 0).

For more information, see Ragonneau (2022, § 5.2.5).
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THERE REMAIN MANY DIFFICULTIES TO ADDRESS

• What if the trust-region subproblem is infeasible?
COBYQA uses a Byrd-Omojokun composite-step approach.

• How to calculate the trial step sk numerically?
We adapt the truncated conjugate gradient method.

• What are the approximate Lagrange multipliers λk and µk?
We choose the least-squares Lagrange multipliers.

• How to define a trust-region ratio? Using what merit function?
COBYQA uses the ℓ2-merit function.

• How to update the penalty parameter?
The update incorporates

• a theoretical value for the exactness of the merit function, and
• a strategy used by Powell in COBYLA.

These questions (and more) are addressed in Ragonneau (2022).
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A CRUCIAL DIFFICULTY IN THE IMPLEMENTATION

• What if the interpolation set Yk is almost nonpoised?
A well-known approach: using a geometry-improving mechanism.2

This is a central difficulty in the implementation of DFO methods

Modeling
process

Optimization
process

Often inhibit

each other

• The iterates {xk} likely lie on a particular path.
• The modeling process does not ponder the optimization problem.

2See Conn, Scheinberg, and Vicente (2008a,b) and Fasano, Morales, and Nocedal (2009).
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A NEW INTERPRETATION OF SQP



THIS PART IS NOT ABOUT DFO BUT SQP.
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GENERAL SETTINGS

For simplicity, we consider the smooth equality-constrained problem

min
x∈Rn

f(x) s.t. h(x) = 0,

and we denote by L its Lagrangian, given by

L(x, µ) = f(x) + µTh(x).

Classical interpretations of SQP

• It is Newton’s method applied to the KKT system.
• It iteratively minimizes the second-order Taylor expansion of

L̃(x, µ) = f(x) + µT
[
h(x)− h(xk)−∇h(xk)(x− xk)

]
.

• It is equivalent to a convex-composite algorithm for NLP.
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THE NEW INTERPRETATION

The SQP subproblem at (x̄, µ̄) is

min
s∈Rn

f(x̄) +∇f(x̄)Ts+
1

2
sT∇2

x,xL(x̄, µ̄)s

s.t. h(x̄) +∇h(x̄)s = 0.

A curve on the level surface of the constraints
We consider a curve parametrized by ξ : R → Rn with

h
(
ξ(t)

)
= h(x̄) for all t ∈ R and ξ(0) = x̄.

Note that x̄ can be infeasible, i.e., h(x̄) ̸= 0.

Remark that ∇h(x̄)ξ′(0) = 0, i.e., ξ′(0) ∈ ker∇h(x̄).
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THE NEW INTERPRETATION (CONT’D)

The objective function of the SQP subproblem at (x̄, µ̄) is

q(s) = f(x̄) +∇f(x̄)Ts+
1

2
sT∇2

x,xL(x̄, µ̄)s.

Main result (Ragonneau and Zhang, 2022)
If f , h, and ξ have locally Lipschitz second-order derivatives, then

∣∣f(ξ(t))− q
(
ξ′(0)t

)∣∣ ≤ (
νt+

1

2

∣∣ξ′′(0)T∇xL(x̄, µ̄)
∣∣)t2

for some ν ≥ 0, ϵ > 0, and all t ∈ (−ϵ, ϵ).

• Note that ∇xL(x̄, µ̄) ≈ 0 if (x̄, µ̄) is almost a KKT pair.
• What does this theorem mean geometrically?
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A GRAPHICAL REPRESENTATION

•x̄∥∥∇h(x̄)†h(x̄)
∥∥

h−1(x̄)

x̄+ ker∇h(x̄)

x̄+ {s ∈ Rn : h(x̄) +∇h(x̄)s = 0}

h−1(0)

• The green line represents the feasible set of the SQP subproblem.
• If h(x̄) = 0, the green and yellow lines overlap.
• The green line is a shifted copy of the yellow one towards feasibility.
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IMPLEMENTATION AND EXPERIMENTS



THE PYTHON IMPLEMENTATION OF COBYQA

From Powell (2006)
“The development of NEWUOA has taken nearly three years. The work
was very frustrating […]”

The development of COBYQA was not easier.

We implemented COBYQA in Python and made it publicly available.

 

 

www.cobyqa.com

Installation via PyPI
$ pip install cobyqa
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SOLVING SOLAR6 (GARNEAU 2015)

The problem has

• 5 continuous variables,
• inviolable bound constraints on each variable,
• 6 nonlinear inequality constraints, and
• an infeasible initial guess, with

∥∥max{0, g(x0)}
∥∥
∞ ≈ 44.9965.

Output of COBYQA (with default options)

• Number of function evaluations: 192.
• Final objective function value: f(x192) = 54 842 275.4721.
• Final constraint violation:

∥∥max{0, g(x192)}
∥∥
∞ = 0.0.

The best objective function value so far is f(x∗) = 43 955 452.8547.
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COMPARING COBYQA WITH EXISTING DFO SOLVERS

• We assess the quality of points based on the merit function

φ(x) =


f(x) if v∞(x) ≤ 10−10,
∞ if v∞(x) ≥ 10−5,
f(x) + 105v∞(x) otherwise,

where v∞ denotes the ℓ∞-constraint violation.
• The problems are from the CUTEst set.
• The problems are of dimension at most 50 (this is not small).
• Problems with inviolable bounds replace f with

f̃(x) =

{
f(x) if l ≤ x ≤ u,
∞ otherwise.
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PERFORMANCE OF THE SQP APPROACH

We compare two strategies for evaluating the Lagrange multipliers

• on nonlinearly constrained problems,
• comparing the default and the erroneous (λk = 0 and µk = 0) ones.
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PERFORMANCE ON LINEARLY CONSTRAINED PROBLEMS

We compare COBYQA, LINCOA, and COBYLA

• on linearly constrained problems,

• with inviolable bounds.
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PERFORMANCE ON NONLINEARLY CONSTRAINED PROBLEMS

We compare COBYQA and COBYLA

• on nonlinearly constrained problems,

• with inviolable bounds.
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COMPARISON WITH COBYLA

We compare COBYQA and COBYLA on all 388 problems.
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CONCLUSION



CONCLUSION

We presented our new method COBYQA.

• It already received positive feedback from practitioners.
• It will soon be included in the Python packages PDFO and GEMSEO.

We established a new interpretation of the SQP subproblem.

• Does it provide new insights into manifold optimization?
• Can these insights help the theoretical analysis of COBYQA?

 

 

COBYQA
 

 

My thesis

$ pip install cobyqa
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